Equilibrium for Perturbations of Multifunctions by Convex Processes

نویسندگان

  • H. BEN-EL-MECHAIEKH
  • W. KRYSZEWSKI
  • G. Haddad
چکیده

We present a general equilibrium theorem for the sum of an upper hemicontinuous convex valued multifunction and a closed convex process defined on a noncompact subset of a normed space. The lack of compactness is compensated by inwardness conditions related to the existence of viable solutions of some differential inclusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete Characterization of Openness, Metric Regularity, and Lipschitzian Properties of Multifunctions

We consider some basic properties of nonsmooth and set-valued mappings (multifunctions) connected with open and inverse mapping principles, distance estimates to the level sets (metric regularity), and a locally Lipschitzian behavior. These properties have many important applications to various problems in nonlinear analysis, optimization, control theory, etc., especially for studying sensitivi...

متن کامل

On the Solution Existence of Generalized Vector Quasi-equilibrium Problems with Discontinuous Multifunctions

In this paper we deal with the following generalized vector quasiequilibrium problem: given a closed convex set K in a normed space X, a subset D in a Hausdorff topological vector space Y , and a closed convex cone C in R. Let Γ : K → 2, Φ : K → 2 be two multifunctions and f : K×D×K → R be a single-valued mapping. Find a point (x̂, ŷ) ∈ K×D such that (x̂, ŷ) ∈ Γ(x̂)× Φ(x̂), and {f(x̂, ŷ, z) : z ∈ Γ(...

متن کامل

On calmness conditions in convex bilevel programming

In this article, we compare two different calmness conditions which are widely used in the literature on bilevel programming and on mathematical programs with equilibrium constraints. In order to do so, we consider convex bilevel programming as a kind of intersection between both research areas. The so-called partial calmness concept is based on the function value approach for describing the lo...

متن کامل

Representations of Affine Multifunctions by Affine Selections

The paper deals with affine selections of affine (both convex and concave) multifunctions acting between finite-dimensional real normed spaces. It is proved that each affine multifunction with compact values possesses an exhaustive family of affine selections and, consequently, can be represented by its affine selections. Moreover, a convex multifunction with compact values possesses an exhaust...

متن کامل

Metric subregularity of multifunctions and applications ∗

The metric subregularity of multifunctions is a key notion in Variational Analysis and Optimization. In this paper, we establish firstly a cretirion for metric subregularity of multifunctions between metric spaces, by using the strong slope. Next, we use a combination of abstract coderivatives and contingent derivatives to derive verifiable first order conditions ensuring the metric subregulari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001